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Why the DFT is Faster Than the FFT for FDTD

Time-to-Frequency Domain Conversions
C. M. Furse. Member, IEEE, and O. P, Gandhi, Fellow, IEEE

Abstracf—Although it is a time-domain method, the finite-

difference time-domain (FDTD) method has been used extensively

for calculating frequency domain parameters such as specific
absorption rate, radar cross-section, and S-parameters. When a

broad frequency band is of interest, using a broad-band pulsed
excitation can provide this frequency response with a single
FDTD simulation. The frequency domain data can be calculated
from the time domain data using either a discrete Fourier

transform (DFT) or a fast Fourier transform (FFT). This letter
examines both methods and analyzes why the DFT is generally
more efficient and easier to use than the FFT for FDTD time-to-
frequency domain conversions.

I. INTRODUCTION

A

LTHOUGH IT is a time-domain method, the finite-

difference time-domain method has been used exten-

sively to calculate frequency-domain parameters. These in-

clude specific absorption rate (SAR) [1], radar cross-section

[2], current distribution [3], and S-parameters [4]. If a broad

frequency range is of interest, a broad-band pulsed excitation

can be used to obtain the frequency response from a single

FDTD simulation. This requires conversion of the original

time domain data to the frequency domain, which is done

with either the discrete Fourier transform (DFT ) [5], [6] or

the fast Fourier transform (FFT) [7], [8]. Although the FFT

is commonly thought to be “faster.” it is actually significantly

“slower” than the DFT for most FDTD simulations, requires

much more memory, and has limitations on the resolution of

the calculated frequencies. Since many applications, such as

calculation of SAR or RCS, require a huge number of time-

to-frequency domain conversions, choosing the most efficient

method is very important. This paper compares the efficiency

and use of the DFT and the FFT for FDTD simulations and

demonstrates why the DFT is generally more efficient and

more accurate than the FFT for these applications.

II. FINDING THE FREQUENCY RESPONSE FROM A PULSED

FDTD SrmmmloN USING FOURIER TRANSFORM NIETHODS

In order to obtain broad-band frequency domain data from

an FDTD simulation, a broad-band pulse is used as the incident

field. The time domain data is then converted to the frequency

domain using either the DFT or the FFT.
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The DFT series summation is given by

NDFT–1

G(mAj) = At ~ g(fnjAt) exp [1–j27rntn

NDFT ‘~=()

m=r3,1,2,. ... NDFl–l (1)

where

G(?rL~f) is the complex value of the magnitude and phase

of the equivalent steady-state sine wave at frequency JrLAJ’

g(nAt) is the time-domain value of the pulse at time nAt

Af is the frequency resolution of the frequency-domain

calculations

m is the frequency index, m = O, 1, 2, . . . . NDFT–l

At is the sampling period of the DFT

N~FT is the length of the DFT summation = l/( A,fAt).

This summation is updated at every FDTD time step, so

storage of the complex value, G(m Af), is required. Since

commonly used pulse shapes do not have constant frequency

responses, the final values must also be normalized by the

DFT of the incident pulse to obtain frequency domain data

equivalent to data which would have been obtained if the

model had been illuminated by a 1 V/m incident sine wave at

each frequency of interest.

For the FFT, the complete time history of the values at

all points of interest must be stored and entered into an FFT

program after the FDTD simulation has been completed. When

a large number of time-to-freuqency domain transformations

are made, this can require a huge amount of disk storage.

As with the DFT, the final calculated values must also be

normalized by the frequency response of the incident pulse.

III. COMPARISON OF THE DFT AND FFT METHODS

Since the DFT and FFT are both based on the summation in

(1), their theoretical accuracy is virtually identical. In practice,

however, the accuracy of the FFT is often compromised by

the limitation on NDFT, which is necessary to provide its

efficiency. The FFT is generally known to be a highly efficient

method, far surpassing the DFT in computational efficiency.

This does not hold true for many FDTD applications, however,

where the DFT is general] y as, or more, computational y

efficient than the FFT and requires far less computer storage.

This occurs because of several basic assumptions unique to

FDTD time-to-frequency-domain conversions.

First, the sampling period of the FDTD simulation is much

smaller than that required by the Nyquist rate [9]. Specifically,

suppose that the cell size is taken to be the nominal value of

J&c = Am,. /10 = (c~/~m~~ FDTD)/10. The time resolution
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is chosen to be At = Ax/(2cO) for stability of the FDTD

algorithm [10, p. 297]. This gives At = 1/(20* F~.X FDTD),

which is 20 samples per period, compared with two samples

per period required by the Nyquist criterion. Without desam-

pling, this means that the FFT will waste time computing ex-

traneous frequencies up to 10 times those properly modeled by

the FDTD simulation. The DFT can be used to calculate only

the properly modeled frequencies, thus eliminating this waste.

Desampling the FDTD time domain data improves the

efficiency of both the DFT and the FFT and eliminates the

waste of calculating frequencies above the range of the FDTD

simulation, For a cell size, AW = A~in/lO, which gives a

sampling rate of 20 samples per period, for instance, only

every 10th time step of the simulation is required for the

Fourier transform. Then, the maximum frequency that will be

calculated by the Fourier transform is equal to the maximum

frequency of the FDTD simulation.

A second reason that the DFT becomes more efficient than

the FFT for pulsed FDTD algorithms is that the number of

FDTD time steps to reach convergence, IVFDTD, is generally

far less than the length of the Fourier transform, lVDFT.

This happens particularly if the frequency resolution, A~,

is chosen to be small, as it often is to allow calculation at

a specific frequency. Suppose, for instance, that information

at the frequencies 40, 350, and 915 MHz is of interest. To

obtain all three of these frequencies from a single FDTD run,

A~ must be chosen to be 5 MHz, to evenly factor all three

frequencies. For the 1.31 cm resolution man model [11], for

instance, At = 21.83 picosecond, so NDFT = 9160, and this

model generally converges in less than 1000 time steps. This

means that all fields are effectively zero after 1000 time steps,

so the DFT summation does not need to be calculated for the

time steps 1001–9 160, which is a significant savings.

If desampling is used with a desampled time resolution of

At’ = 10 At, the length of the Fourier transform becomes

NDFT = 916. The FFT must be calculated for this full length,

but the DFT summation can be stopped n = 100 (NFDTD =

1000) using desampling. This again gives a significant savings.

It is worth noting that the ability to choose any Af, and

therefore compute values for any specific frequency, is a

significant advantage of the DFT over the FFT. The FFT

algorithm gains its efficiency by having IVDFT be a power

of some integer. Specifically, the highly efficient radix-2 FFT

algorithm [12] requires that iVDFT = 2m, that significantly

limits its options, and hence the available Af values and the

specific discrete frequencies which may be calculated. For the

man model case, using lVDFT = 8192 (n = 13), for instance,

8192 frequencies would have to be calculated to obtain values

for 39.13, 301,86, and 916.76 MHz, approximating the desired

frequencies of 40, 300, and 915 MHz.

The computational requirements of the DFT and FFT can

be compared by examining the number of complex multipli-

cations required for each method. The radix-2 FFT algorithm

requires (lVFFT/2) Iogz (lVFFT) complex multiplications,

compared to iVFDTDIVf for the DFT algorithm using the

savings described above, where

NFFT is the number of frequencies computed using the FFT

algorithm

NFDTD is the number of time steps for the FDTD simulation

(or the number of terms in the DFT summation if desampling

is used

Nf is the number of frequencies of interest computed by

DFT.

For the 1.3 l-cm resolution man model test case described

above, with At = 21.83 ps,’ and A.f = 5 MHz, suppose

NFFT = 8192, NFDTD = 1000, and Nf = 3. Then, the

number of complex multiplications without desampling is

53248 for the FFT algorithm and 3000 for the DFT algorithm.

Using a desampled time resolution of At’ = 218.3 ps and

IVFFT = 1024 requires and 5120 complex multiplications

for the FFT and 300 for the DFT. Desampling significantly

reduces the computational time of both methods, but their

relative efficiency remains about the same, with the DFT being

significantly more efficient than the FFT.

To further emphasize the significance of this savings, sup-

pose that this was used to compute the SAR distribution at

every point in the 1.31 cm resolution man model (404,838

locations). This requires a Fourier transform of the E., Eu,

and EZ components at every location. The FDTD algorithm

requires two real multiplications (conservatively equivalent to

one complex multiplication) for each of six field components

for 1000 time steps, which is 2.4 x 109 complex multiplica-

tions. Using desampling, the DFT would require 0.36 x 109

complex multiplications (1/7 of the FDTD simulation), or

the FFT would require 6.22 x 109 complex multiplications

(three times as much as the FDTD simulation itself!). Without

desampling, the DFT would require 3.6 x 109 complex mul-

tiplications, and the FFT would require 64.7 x 109 complex

multiplications,

The exact efficiency comparison between DFT and FFT

depends on the frequency resolution, A f, which controls

~FFT, the number of time steps to reach convergence, and

the number of frequencies of interest. As A f decreases, the

DFT becomes relatively more efficient.

Another advantage of the DFT algorithm is that the time-

history of the fields does not need to be stored, because

the summation is updated at each time step of the FDTD

simulation. For the FFT, on the other hand, the complete

time-history must be stored at each location. For the 1.31-cm

resolution man model using desampling, this means that 100

time steps must be stored for 404838 locations, which is over

10 times the storage requirements for the FDTD simulation

itself. If not stored in core memory, the burden falls on disk

storage, which is also often limited. For many FDTD cases,

the DFT will be as or more computationally efficient than the

FFT for time-to-frequency-domain conversions, requires far

less additional storage, and has the added advantage that the

frequency resolution can be chosen to allow precise calculation

of desired frequencies.

IV. CONCLUSION

The relative merits of the DFT and FFT for FDTD time-

to-frequency domain conversions are summarized in Table I,

shown on the next page, for the test case of SAR calculations

for the 1.3 l-cm resolution man model. For this and other
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TABLE I
COMPARISONOF DFT AND FFT FOR TEME-TO-FREQUENCY CONVERSIONS REQUIREDTCI COMPUTE

SAR DISTRIBUTION IN 1.31-cm RESOLUTION MAN MODEL

DFT FFT FDTD

Number of Complex 3.6 X 109 64.7 x 109 2.4 X 109

Multiplications
(w/o desampling)

Number of Complex 0.36 X 109 6.23 X 109 2.4 X 109

Multiplications
(w/ desampling)

Storage Requirement 0.8 MBytes 404.8 Mbytes =2.83 MBytes

(w/o desampling)

Storage Requirement 0.8 MBytes 40.48 Mbytes =2.83 MBytes

(w/ desampli.ng)

Choice of Frequency unlimited limited by
radix-2 algorithm

FDTD applications, the DFT is more computationally efficient

than the FFTandalso requires less memory. For applications

requiring a large number of these conversions, significant

savings incomputer time and memory canberealized byusing

the DFT instead of the FFT.
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