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Why the DFT is Faster Than the FFT for FDTD
Time-to-Frequency Domain Conversions
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Abstract—Although it is a time-domain method, the finite-
difference time-domain (FDTD) method has been used extensively
for calculating frequency domain parameters such as specific
absorption rate, radar cross-section, and S-parameters. When a
broad frequency band is of interest, using a broad-band pulsed
excitation can provide this frequency response with a single
FDTD simulation. The frequency domain data can be calculated
from the time domain data using either a discrete Fourier
transform (DFT) or a fast Fourier transform (FFT). This letter
examines both methods and analyzes why the DFT is generally
more efficient and easier to use than the F¥T for FDTD time-to-
frequency domain conversions.

1. INTRODUCTION

LTHOUGH IT is a time-domain method, the finite-

difference time-domain method has been used exten-
sively to calculate frequency-domain parameters. These in-
clude specific absorption rate (SAR) [1], radar cross-section
[2]. current distribution [3], and S-parameters [4]. If a broad
frequency range is of interest, a broad-band pulsed excitation
can be used to obtain the frequency response from a single
FDTD simulation. This requires conversion of the original
time domain data to the frequency domain, which is done
with either the discrete Fourier transform (DFT) [5], [6] or
the fast Fourier transform (FFT) [7], [8]. Although the FFT
is commonly thought to be “faster,” it is actually significantly
“slower” than the DFT for most FDTD simulations, requires
much more memory, and has limitations on the resolution of
the calculated frequencies. Since many applications, such as
calculation of SAR or RCS, require a huge number of time-
to-frequency domain conversions, choosing the most efficient
method is very important. This paper compares the efficiency
and use of the DFT and the FFT for FDTD simulations and
demonstrates why the DFT is generally more efficient and
more accurate than the FFT for these applications.

II. FINDING THE FREQUENCY RESPONSE FROM A PULSED
FDTD StMULATION USING FOURIER TRANSFORM METHODS

In order to obtain broad-band frequency domain data from
an FDTD simulation, a broad-band pulse is used as the incident
field. The time domain data is then converted to the frequency
domain using either the DFT or the FFT.
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The DFT series summation is given by
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where

G(mAf) is the complex value of the magnitude and phase
of the equivalent steady-state sine wave at frequency mA f

g(nAt) is the time-domain value of the pulse at time nA¢

Af is the frequency resolution of the frequency-domain
calculations

m is the frequency index, m = 0,1,2,--

At is the sampling period of the DFT

Nprr is the length of the DFT summation = 1/(AfA%).

This summation is updated at every FDTD time step, so
storage of the complex value, G(mAf), is required. Since
commonly used pulse shapes do not have constant frequency
responses, the final values must also be normalized by the
DFT of the incident pulse to obtain frequency domain data
equivalent to data which would have been obtained if the
model had been illuminated by a 1 V/m incident sine wave at
each frequency of interest.

For the FFT, the complete time history of the values at
all points of interest must be stored and entered into an FFT
program after the FDTD simulation has been completed. When
a large number of time-to-freuqency domain transformations
are made, this can require a huge amount of disk storage.
As with the DFT, the final calculated values must also be
normalized by the frequency response of the incident pulse.

-+, Nprr-1

III. COMPARISON OF THE DFT AND FFT METHODS

Since the DFT and FFT are both based on the summation in
(1), their theoretical accuracy is virtually identical. In practice,
however, the accuracy of the FFT is often compromised by
the limitation on Nppr, which is necessary to provide its
efficiency. The FFT is generally known to be a highly efficient
method, far surpassing the DFT in computational efficiency.
This does not hold true for many FDTD applications, however,
where the DFT is generally as, or more, computationally
efficient than the FFT and requires far less computer storage.
This occurs because of several basic assumptions unique to
FDTD time-to-frequency-domain conversions.

First, the sampling period of the FDTD simulation is much
smaller than that required by the Nyquist rate [9]. Specifically,
suppose that the cell size is taken to be the nominal value of
Az = Amin/10 = (¢o/ Fmax voTD)/10. The time tesolution

1051-8207/95$04.00 © 1995 IEEE



IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 5, NO. 10, OCTOBER 1995 327

is chosen to be At = Axz/(2¢,) for stability of the FDTD
algorithm [10, p. 297]. This gives At = 1/{20% Fiyax FDTD),
which is 20 samples per period, compared with two samples
per period required by the Nyquist criterion. Without desam-
pling, this means that the FFT will waste time computing ex-
traneous frequencies up to 10 times those properly modeled by
the FDTD simulation. The DFT can be used to calculate only
the properly modeled frequencies, thus eliminating this waste.

Desampling the FDTD time domain data improves the
efficiency of both the DFT and the FFT and eliminates the
waste of calculating frequencies above the range of the FDTD
simulation. For a cell size, Az = Apin/10, which gives a
sampling rate of 20 samples per period, for instance, only
every 10th time step of the simulation is required for the
Fourier transform. Then, the maximum frequency that will be
calculated by the Fourier transform is equal to the maximum
frequency of the FDTD simulation.

A second reason that the DFT becomes more efficient than
the FFT for pulsed FDTD algorithms is that the number of
FDTD time steps to reach convergence, NyppTp, is generally
far less than the length of the Fourier transform, Nppr.
This happens particularly if the frequency resolution, Af,
is chosen to be small, as it often is to allow calculation at
a specific frequency. Suppose, for instance, that information
at the frequencies 40, 350, and 915 MHz is of interest. To
obtain all three of these frequencies from a single FDTD run,
Af must be chosen to be 5 MHz, to evenly factor all three
frequencies. For the 1.31 cm resolution man model [11], for
instance, At = 21.83 picoseconds, so Nppr = 9160, and this
model generally converges in less than 1000 time steps. This
means that all fields are effectively zero after 1000 time steps,
so the DFT summation does not need to be calculated for the
time steps 1001-9160, which is a significant savings.

If desampling is used with a desampled time resolution of
At = 10 At, the length of the Fourier transform becomes
Nppr = 916. The FFT must be calculated for this full length,
but the DFT summation can be stopped n = 100 (NppTp =
1000) using desampling. This again gives a significant savings.

It is worth noting that the ability to choose any A f, and
therefore compute values for any specific frequency, is a
significant advantage of the DFT over the FFT. The FFT
algorithm gains its efficiency by having Nppr be a power
of some integer. Specifically, the highly efficient radix-2 FFT
algorithm [12] requires that Nppp = 2%, that significantly
limits its options, and hence the available A f values and the
specific discrete frequencies which may be calculated. For the
man model case, using Nppr = 8192 (n = 13), for instance,
8192 frequencies would have to be calculated to obtain values
for 39.13, 301.86, and 916.76 MHz, approximating the desired
frequencies of 40, 300, and 915 MHz.

The computational requirements of the DFT and FFT can
be compared by examining the number of complex multipli-
cations required for each method. The radix-2 FFT algorithm
requires (Nppr/2) log, (Nppr) complex multiplications,
compared to NpprpNy for the DFT algorithm using the
savings described above, where

Nypr is the number of frequencies computed using the FFT
algorithm

NppTp is the number of time steps for the FDTD simulation
(or the number of terms in the DFT summation if desampling
is used

Ny is the number of frequencies of interest computed by
DFT.

For the 1.31-cm resolution man model test case described
above, with At = 21.83 ps, and Af = 5 MHz, suppose
Nppr = 8192, Neprp = 1000, and Ny = 3. Then, the
number of complex multiplications without desampling is
53248 for the FFT algorithm and 3000 for the DFT algorithm.
Using a desampled time resolution of At = 218.3 ps and
Nppr = 1024 requires and 5120 complex multiplications
for the FFT and 300 for the DFT. Desampling significantly
reduces the compuational time of both methods, but their
relative efficiency remains about the same, with the DFT being
significantly more efficient than the FFT.

To further emphasize the significance of this savings, sup-
pose that this was used to compute the SAR distribution at
every point in the 1.31 cm resolution man model (404,838
locations). This requires a Fourier transform of the E, E,,
and E, components at every location. The FDTD algorithm
requires two real multiplications (conservatively equivalent to
one complex multiplication) for each of six field components
for 1000 time steps, which is 2.4 x 10° complex multiplica-
tions. Using desampling, the DFT would require 0.36 x 10°
complex multiplications (1/7 of the FDTD simulation), or
the FFT would require 6.22 x 10° complex multiplications
(three times as much as the FDTD simulation itself!). Without
desampling, the DFT would require 3.6 x 10° complex mul-
tiplications, and the FFT would require 64.7 x 10° complex
multiplications.

The exact efficiency comparison between DFT and FFT
depends on the frequency resolution, Af, which controls
Nyppr, the number of time steps to reach convergence, and
the number of frequencies of interest. As Af decreases, the
DFT becomes relatively more efficient.

Another advantage of the DFT algorithm is that the time-
history of the fields does not need to be stored, because
the summation is updated at each time step of the FDTD
simulation. For the FFT, on the other hand, the complete
time-history must be stored at each location. For the 1.31-cm
resolution man model using desampling, this means that 100
time steps must be stored for 404 838 locations, which is over
10 times the storage requirements for the FDTD simulation
itself, If not stored in core memory, the burden falls on disk
storage, which is also often limited. For many FDTD cases,
the DFT will be as or more computationally efficient than the
FFT for time-to-frequency-domain conversions, requires far
less additional storage, and has the added advantage that the
frequency resolution can be chosen to allow precise calculation
of desired frequencies.

IV. CONCLUSION

The relative merits of the DFT and FFT for FDTD time-
to-frequency domain conversions are summarized in Table I,
shown on the next page, for the test case of SAR calculations
for the 1.31-cm resolution man model. For this and other
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TABLE 1
CoMPARISON OF DFT AND FFT FOR TIME-TO-FREQUENCY CONVERSIONS REQUIRED TO COMPUTE
SAR DISTRIBUTION IN 1.31-cm RESOLUTION MAN MODEL

DFT FFT FDTD

Number of Complex 3.6 x 10° 64.7 x 10° 2.4 x 10°
Multiplications

(w/o desampling)

Number of Complex 0.36 x 10° 6.23 x 10° 2.4 x 10°
Multiplications

{(w/ desampling)

Storage Requirement 0.8 MBytes 404.8 Mbytes =2.83 MBytes
(w/0 desampling)

Storage Requirement 0.8 MBytes 40.48 Mbytes =~2.83 MBytes

(w/ desampling)

Choice of Frequency unlimited

limited by
radix-2 algorithm

FDTD applications, the DFT is more computationally efficient
than the FFT and also requires less memory. For applications
requiring a large number of these conversions, significant
savings in computer time and memory can be realized by using
the DFT instead of the FFT.
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